Skip to content

Path

This section explains how to extract and validate path parameters in Rapidy.

You can validate data using any type supported by pydantic.

Description

Path parameters allow you to create dynamic routes in your application.

You can define path parameters using Python's formatted string syntax:

from rapidy.http import get, PathParam

@get('/{user_id}')
async def handler(
    user_id: str = PathParam(),
) -> ...:

For more details on dynamic routes in aiohttp, see here.

Extracting a Single Path Parameter

PathParam allows you to extract a single path parameter.

from rapidy.http import get, PathParam

@get('/{user_id}')
async def handler(
    user_id: str = PathParam(),
) -> ...:
from rapidy.http import get, PathParam

@get('/{user_id}/{user_data}')
async def handler(
    user_id: str = PathParam(),
    user_data: str = PathParam(),
) -> ...:

Extracting All Path Parameters

PathParams allows you to extract all path parameters at once.

Extraction into a Predefined Schema

pydantic.BaseModel

from pydantic import BaseModel
from rapidy.http import get, PathParams

class PathData(BaseModel):
    user_id: str
    user_data: str

@get('/{user_id}/{user_data}')
async def handler(
    path_data: PathData = PathParams(),
) -> ...:

dataclasses.dataclass

dataclasses.dataclass is supported as a model type, but setting an alias using standard dataclasses tools is not possible.

from dataclasses import dataclass
from rapidy.http import get, PathParams

@dataclass
class PathData:
    user_id: str
    user_data: str

@get('/{user_id}/{user_data}')
async def handler(
    path_data: PathData = PathParams(),
) -> ...:

Extraction into a Dictionary

from rapidy.http import get, PathParams

@get('/{user_id}/{user_data}')
async def handler(
    path_data: dict[str, str] = PathParams(),
) -> ...:
# {'user_id': ..., 'user_data': ...}

Extraction Without Validation

Disabling validation is not recommended.

If validation is disabled, parameters are returned in the base aiohttp structure:

  • PathParamstr
  • PathParamsdict[str, str]

Ways to Disable Validation

Explicit Disabling

from rapidy.http import get, PathParam, PathParams

@get('/')
async def handler_1(
    user_id: int = PathParam(validate=False)
) -> ...:
    # ...

@get('/')
async def handler_2(
    path_data: int = PathParams(validate=False)
) -> ...:
    # {'user_id': ..., 'user_data': ...}

Using Any

from typing import Any

@get('/')
async def handler_1(
    user_id: Any = PathParam()
) -> ...:
    # "0.0.0.0:8080"

@get('/')
async def handler_2(
    path_data: Any = PathParams()
) -> ...:
    # {'user_id': ..., 'user_data': ...}

No Type Annotation

If the type is not specified, Any is used by default.

@get('/')
async def handler_1(
    user_id=PathParam()
) -> ...:
    # ...

@get('/')
async def handler_2(
    path_data=PathParams()
) -> ...:
    # {'user_id': ..., 'user_data': ...}

Default Values

PathParam and PathParams do not support default values.

This is an intentional architectural limitation: without it, dynamic routing cannot be properly implemented.

Attempting to set default or default_factory for a path parameter will raise a ParameterCannotUseDefaultError or ParameterCannotUseDefaultFactoryError exception.

Warnings and Specifics

Using PathParam and PathParams together

You cannot use Header and Headers in the same handler.

@get('/{user_id}/{user_data}')
async def handler(
    user_id: str = PathParam(),
    path_data: PathData = PathParams(),
) -> ...:

When the application starts, an AnotherDataExtractionTypeAlreadyExistsError exception will be raised.

------------------------------
Attribute with this data extraction type cannot be added to the handler - another data extraction type is already used in the handler.

Handler path: `main.py`
Handler name: `handler`
Attribute name: `path_data`
------------------------------

The alias Attribute for PathParams

The alias attribute does not work for PathParams().

@get('/{user_id}/{user_data}')
async def handler(
    path_data: PathData = PathParams(alias='SomeName'),  # <-- alias not working
) -> ...:

How Raw Data is Extracted

In Rapidy, the match_info method of the Request object is used, after which the obtained data is passed to pydantic for validation.

How Extraction Works Inside Rapidy

async def extract_path(request: Request) -> dict[str, str]:
    return dict(request.match_info)

Rapidy uses built-in aiohttp mechanisms.

For more information about the aiohttp.Request object and data extraction methods, see here.